An Inequality for Polyhedra and Ideal Triangulations of Cusped Hyperbolic 3-manifolds

نویسندگان

  • MASAAKI WADA
  • YASUSHI YAMASHITA
  • HAN YOSHIDA
چکیده

It is not known whether every noncompact hyperbolic 3-manifold of finite volume admits a decomposition into ideal tetrahedra. We give a partial solution to this problem: Let M be a hyperbolic 3-manifold obtained by identifying the faces of n convex ideal polyhedra P1, . . . , Pn. If the faces of P1, . . . , Pn−1 are glued to Pn, then M can be decomposed into ideal tetrahedra by subdividing the Pi’s.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cusped hyperbolic census is complete

From its creation in 1989 through subsequent extensions, the widely-used “SnapPea census” now aims to represent all cusped finite-volume hyperbolic 3-manifolds that can be obtained from ≤ 8 ideal tetrahedra. Its construction, however, has relied on inexact computations and some unproven (though reasonable) assumptions, and so its completeness was never guaranteed. For the first time, we prove h...

متن کامل

1 4 Ju n 20 04 Normal surfaces in cusped 3 – manifolds

This is the first in a series of papers giving a geometric and combinatorial variant of well–known constructions by Culler, Morgan and Shalen concerning the compactification of the character variety of a 3– manifold. The techniques involve normal surfaces, angle structures and hyperbolic geometry, and lend themselves to the study of surfaces and boundary curves associated to ideal points of the...

متن کامل

Approved cum laude.

2000 Degree in Mathematics at the University of Pisa. Dissertation with title " Polyhedral decomposition of hyperbolic manifolds with geodesic boundary " , supervisor prof. C. Petro-nio. Approved cum laude. dissertation with title " Deforming triangulations of hyperbolic 3-manifolds with geodesic boundary " , under the supervision of prof. C. Petronio. Approved cum laude. 2005 Non-permanent pos...

متن کامل

Geodesic Ideal Triangulations Exist Virtually

It is shown that every non-compact hyperbolic manifold of finite volume has a finite cover admitting a geodesic ideal triangulation. Also, every hyperbolic manifold of finite volume with non-empty, totally geodesic boundary has a finite regular cover which has a geodesic partially truncated triangulation. The proofs use an extension of a result due to Long and Niblo concerning the separability ...

متن کامل

Commensurators of Cusped Hyperbolic Manifolds

This paper describes a general algorithm for finding the commensurator of a non-arithmetic hyperbolic manifold with cusps, and for deciding when two such manifolds are commensurable. The method is based on some elementary observations regarding horosphere packings and canonical cell decompositions. For example, we use this to find the commensurators of all non-arithmetic hyperbolic once-punctur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996